Theory Courses/ ECE

Course Type	Course Code	Name of the Course	L	Т	P	Credits
DC	NECC532	Statistical Signal Processing	3	1	0	4

Course Objective

To study statistical signal processing theory and its applications in communications, speech signal processing and signal modeling.

Learning Outcomes

Upon successful completion of the course, students will:

- be able to understand theory and applications of adaptive filters
- be able to implement adaptive filter algorithms
- be able to implement spectrum estimation methods

Unit No.	Topics to be Covered	Lecture + Tutorial Hours	Learning Outcome		
1	Review of Digital Signal Processing, DFT, Z-transform, FIR filter, IIR filter, Filter response, Filter characteristics and implementation. Signal Processing Applications.	6+2	Review the fundamentals of digital signal processing		
2	Stochastic Process: Definition and characterization, correlation function, power spectra, System response to random inputs.	6 + 2	Stochastic modeling of a signal		
3	Linear Prediction, Lattice filter, Levinson-Durbin algorithm.	6+2	Implementation methods for SSP algorithms		
4	Optimum Linear filters, Wiener filters, Properties and applications.	6+2	Introduction to optimum filters		
5	Adaptive filters, LMS Filter, RLS filter, Specific applications of adaptive filters	9+3	Understand the fundamentals of adaptive filters		
6	State estimation, Kalman Filter, Applications	3+1	Understand theory and application of recursive least square algorithms		
7	Power spectrum estimation, Non-parametric method, Parametric method, Filter bank method, Eigenanalysis algorithms.	6+2	Discuss various spectrum estimation methods		
	Total	42(L) + 14(T)			

Text Books:

- 1. Proakis, John G, Manolakis Dimitris G.. *Digital signal processing: principles, algorithms, and applications, 4/E.* Pearson Education India, 2007.
- 2. Widrow B., Stearns Samuel D.. Adaptive Signal Processing, Pearson Education India, 2002.

Reference Books:

- 1. Haykin, Simon S. Adaptive filter theory. Pearson Education India, 2002.
- 2. Ingle, Vinay, Stephen Kogon, and Dimitris Manolakis. *Statistical and adaptive signal processing*. Artech, 2005.
- 3. Farhang-Boroujeny, Behrouz. Adaptive filters: theory and applications. John Wiley & Sons, 2013.
- 4. Hayes, Monson H. Statistical digital signal processing and modeling. John Wiley & Sons, 1996.